p-group, metabelian, nilpotent (class 4), monomial
Aliases: C42⋊2C8, (C2×C42).8C4, (C22×C4).5D4, C42⋊8C4.3C2, (C2×C4).29M4(2), C2.2(C42⋊3C4), C22.17(C22⋊C8), C22.39(C23⋊C4), C2.2(C42.C4), C23.151(C22⋊C4), C22.6(C4.10D4), C22.M4(2).2C2, C2.5(C22.M4(2)), (C2×C4⋊C4).6C4, (C2×C4).34(C2×C8), (C2×C4⋊C4).3C22, (C22×C4).60(C2×C4), SmallGroup(128,56)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C22 — C23 — C22×C4 — C2×C4⋊C4 — C42⋊8C4 — C42⋊C8 |
C1 — C22 — C23 — C2×C4⋊C4 — C42⋊C8 |
C1 — C22 — C23 — C2×C4⋊C4 — C42⋊C8 |
Generators and relations for C42⋊C8
G = < a,b,c | a4=b4=c8=1, ab=ba, cac-1=a-1b, cbc-1=a2b-1 >
Character table of C42⋊C8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | i | -i | i | i | -i | i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -i | i | -i | -i | i | -i | i | i | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | -1 | -i | i | 1 | 1 | i | i | -i | ζ87 | ζ85 | ζ83 | ζ83 | ζ85 | ζ87 | ζ8 | ζ8 | linear of order 8 |
ρ10 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | i | -1 | i | -i | -1 | -1 | -i | i | -i | ζ8 | ζ83 | ζ8 | ζ85 | ζ87 | ζ85 | ζ83 | ζ87 | linear of order 8 |
ρ11 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | i | -1 | i | -i | 1 | 1 | -i | -i | i | ζ85 | ζ87 | ζ8 | ζ8 | ζ87 | ζ85 | ζ83 | ζ83 | linear of order 8 |
ρ12 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | -1 | -i | i | 1 | 1 | i | i | -i | ζ83 | ζ8 | ζ87 | ζ87 | ζ8 | ζ83 | ζ85 | ζ85 | linear of order 8 |
ρ13 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -i | -1 | -i | i | -1 | -1 | i | -i | i | ζ87 | ζ85 | ζ87 | ζ83 | ζ8 | ζ83 | ζ85 | ζ8 | linear of order 8 |
ρ14 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | i | -1 | i | -i | -1 | -1 | -i | i | -i | ζ85 | ζ87 | ζ85 | ζ8 | ζ83 | ζ8 | ζ87 | ζ83 | linear of order 8 |
ρ15 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | i | -1 | i | -i | 1 | 1 | -i | -i | i | ζ8 | ζ83 | ζ85 | ζ85 | ζ83 | ζ8 | ζ87 | ζ87 | linear of order 8 |
ρ16 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -i | -1 | -i | i | -1 | -1 | i | -i | i | ζ83 | ζ8 | ζ83 | ζ87 | ζ85 | ζ87 | ζ8 | ζ85 | linear of order 8 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | 0 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 2i | 2 | -2i | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | -2i | 2 | 2i | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ21 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | -4 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C4.10D4, Schur index 2 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42.C4 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42.C4 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
(1 5)(2 12 32 19)(3 29)(4 14 26 21)(6 16 28 23)(7 25)(8 10 30 17)(9 20)(11 15)(13 24)(18 22)(27 31)
(1 15 31 22)(2 23 32 16)(3 24 25 9)(4 10 26 17)(5 11 27 18)(6 19 28 12)(7 20 29 13)(8 14 30 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,5)(2,12,32,19)(3,29)(4,14,26,21)(6,16,28,23)(7,25)(8,10,30,17)(9,20)(11,15)(13,24)(18,22)(27,31), (1,15,31,22)(2,23,32,16)(3,24,25,9)(4,10,26,17)(5,11,27,18)(6,19,28,12)(7,20,29,13)(8,14,30,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,5)(2,12,32,19)(3,29)(4,14,26,21)(6,16,28,23)(7,25)(8,10,30,17)(9,20)(11,15)(13,24)(18,22)(27,31), (1,15,31,22)(2,23,32,16)(3,24,25,9)(4,10,26,17)(5,11,27,18)(6,19,28,12)(7,20,29,13)(8,14,30,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,5),(2,12,32,19),(3,29),(4,14,26,21),(6,16,28,23),(7,25),(8,10,30,17),(9,20),(11,15),(13,24),(18,22),(27,31)], [(1,15,31,22),(2,23,32,16),(3,24,25,9),(4,10,26,17),(5,11,27,18),(6,19,28,12),(7,20,29,13),(8,14,30,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
Matrix representation of C42⋊C8 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
6 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 8 | 9 | 4 | 0 |
0 | 0 | 15 | 15 | 0 | 4 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 10 | 13 | 0 |
0 | 0 | 7 | 0 | 0 | 4 |
14 | 16 | 0 | 0 | 0 | 0 |
13 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 11 | 15 | 0 |
0 | 0 | 11 | 7 | 0 | 15 |
0 | 0 | 0 | 0 | 10 | 6 |
0 | 0 | 1 | 0 | 6 | 10 |
G:=sub<GL(6,GF(17))| [16,6,0,0,0,0,0,1,0,0,0,0,0,0,16,0,8,15,0,0,0,1,9,15,0,0,0,0,4,0,0,0,0,0,0,4],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,13,0,0,7,0,0,0,4,10,0,0,0,0,0,13,0,0,0,0,0,0,4],[14,13,0,0,0,0,16,3,0,0,0,0,0,0,7,11,0,1,0,0,11,7,0,0,0,0,15,0,10,6,0,0,0,15,6,10] >;
C42⋊C8 in GAP, Magma, Sage, TeX
C_4^2\rtimes C_8
% in TeX
G:=Group("C4^2:C8");
// GroupNames label
G:=SmallGroup(128,56);
// by ID
G=gap.SmallGroup(128,56);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,120,422,352,1242,521,136,2804]);
// Polycyclic
G:=Group<a,b,c|a^4=b^4=c^8=1,a*b=b*a,c*a*c^-1=a^-1*b,c*b*c^-1=a^2*b^-1>;
// generators/relations
Export
Subgroup lattice of C42⋊C8 in TeX
Character table of C42⋊C8 in TeX